Pooling Functions

riscv_nmsis_nn_status riscv_avgpool_s16(const nmsis_nn_context *ctx, const nmsis_nn_pool_params *pool_params, const nmsis_nn_dims *input_dims, const int16_t *src, const nmsis_nn_dims *filter_dims, const nmsis_nn_dims *output_dims, int16_t *dst)
riscv_nmsis_nn_status riscv_avgpool_s8(const nmsis_nn_context *ctx, const nmsis_nn_pool_params *pool_params, const nmsis_nn_dims *input_dims, const int8_t *src, const nmsis_nn_dims *filter_dims, const nmsis_nn_dims *output_dims, int8_t *dst)
riscv_nmsis_nn_status riscv_max_pool_s16(const nmsis_nn_context *ctx, const nmsis_nn_pool_params *pool_params, const nmsis_nn_dims *input_dims, const int16_t *src, const nmsis_nn_dims *filter_dims, const nmsis_nn_dims *output_dims, int16_t *dst)
riscv_nmsis_nn_status riscv_max_pool_s8(const nmsis_nn_context *ctx, const nmsis_nn_pool_params *pool_params, const nmsis_nn_dims *input_dims, const int8_t *src, const nmsis_nn_dims *filter_dims, const nmsis_nn_dims *output_dims, int8_t *dst)
void riscv_maxpool_q7_HWC(q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const uint16_t dim_im_out, q7_t *bufferA, q7_t *Im_out)
void riscv_avepool_q7_HWC(q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const uint16_t dim_im_out, q7_t *bufferA, q7_t *Im_out)
group Pooling

Perform pooling functions, including max pooling and average pooling.

Perform max and average pooling operations.

Functions

riscv_nmsis_nn_status riscv_avgpool_s16(const nmsis_nn_context *ctx, const nmsis_nn_pool_params *pool_params, const nmsis_nn_dims *input_dims, const int16_t *src, const nmsis_nn_dims *filter_dims, const nmsis_nn_dims *output_dims, int16_t *dst)

s16 average pooling function.

  • Supported Framework: TensorFlow Lite

Parameters
  • ctx[inout] Function context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required. The caller is expected to clear the buffer, if applicable, for security reasons.

  • pool_params[in] Pooling parameters

  • input_dims[in] Input (activation) tensor dimensions. Format: [H, W, C_IN]

  • input_data[in] Input (activation) data pointer. Data type: int16

  • filter_dims[in] Filter tensor dimensions. Format: [H, W] Argument N and C are not used.

  • output_dims[in] Output tensor dimensions. Format: [H, W, C_OUT] Argument N is not used. C_OUT equals C_IN.

  • output_data[inout] Output data pointer. Data type: int16

Returns

The function returns RISCV_NMSIS_NN_SUCCESS - Successful operation RISCV_NMSIS_NN_ARG_ERROR - In case of invalid arguments

riscv_nmsis_nn_status riscv_avgpool_s8(const nmsis_nn_context *ctx, const nmsis_nn_pool_params *pool_params, const nmsis_nn_dims *input_dims, const int8_t *src, const nmsis_nn_dims *filter_dims, const nmsis_nn_dims *output_dims, int8_t *dst)

s8 average pooling function.

  • Supported Framework: TensorFlow Lite

Parameters
  • ctx[inout] Function context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required. The caller is expected to clear the buffer, if applicable, for security reasons.

  • pool_params[in] Pooling parameters

  • input_dims[in] Input (activation) tensor dimensions. Format: [H, W, C_IN]

  • input_data[in] Input (activation) data pointer. Data type: int8

  • filter_dims[in] Filter tensor dimensions. Format: [H, W] Argument N and C are not used.

  • output_dims[in] Output tensor dimensions. Format: [H, W, C_OUT] Argument N is not used. C_OUT equals C_IN.

  • output_data[inout] Output data pointer. Data type: int8

Returns

The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.

riscv_nmsis_nn_status riscv_max_pool_s16(const nmsis_nn_context *ctx, const nmsis_nn_pool_params *pool_params, const nmsis_nn_dims *input_dims, const int16_t *src, const nmsis_nn_dims *filter_dims, const nmsis_nn_dims *output_dims, int16_t *dst)

s16 max pooling function.

  • Supported Framework: TensorFlow Lite

Parameters
  • ctx[inout] Function context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required. The caller is expected to clear the buffer, if applicable, for security reasons.

  • pool_params[in] Pooling parameters

  • input_dims[in] Input (activation) tensor dimensions. Format: [H, W, C_IN]

  • src[in] Input (activation) data pointer. The input tensor must not overlap with the output tensor. Data type: int16

  • filter_dims[in] Filter tensor dimensions. Format: [H, W] Argument N and C are not used.

  • output_dims[in] Output tensor dimensions. Format: [H, W, C_OUT] Argument N is not used. C_OUT equals C_IN.

  • dst[inout] Output data pointer. Data type: int16

Returns

The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.

riscv_nmsis_nn_status riscv_max_pool_s8(const nmsis_nn_context *ctx, const nmsis_nn_pool_params *pool_params, const nmsis_nn_dims *input_dims, const int8_t *src, const nmsis_nn_dims *filter_dims, const nmsis_nn_dims *output_dims, int8_t *dst)

s8 max pooling function.

  • Supported Framework: TensorFlow Lite

Parameters
  • ctx[inout] Function context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required. The caller is expected to clear the buffer, if applicable, for security reasons.

  • pool_params[in] Pooling parameters

  • input_dims[in] Input (activation) tensor dimensions. Format: [H, W, C_IN]

  • input_data[in] Input (activation) data pointer. The input tensor must not overlap with the output tensor. Data type: int8

  • filter_dims[in] Filter tensor dimensions. Format: [H, W] Argument N and C are not used.

  • output_dims[in] Output tensor dimensions. Format: [H, W, C_OUT] Argument N is not used. C_OUT equals C_IN.

  • output_data[inout] Output data pointer. Data type: int8

Returns

The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.

void riscv_maxpool_q7_HWC(q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const uint16_t dim_im_out, q7_t *bufferA, q7_t *Im_out)

Q7 max pooling function.

The pooling function is implemented as split x-pooling then y-pooling.

This pooling function is input-destructive. Input data is undefined after calling this function.

Parameters
  • Im_in[inout] pointer to input tensor

  • dim_im_in[in] input tensor dimention

  • ch_im_in[in] number of input tensor channels

  • dim_kernel[in] filter kernel size

  • padding[in] padding sizes

  • stride[in] convolution stride

  • dim_im_out[in] output tensor dimension

  • bufferA[inout] Not used

  • Im_out[inout] pointer to output tensor

void riscv_avepool_q7_HWC(q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const uint16_t dim_im_out, q7_t *bufferA, q7_t *Im_out)

Q7 average pooling function.

Buffer size:

bufferA size: 2*dim_im_out*ch_im_in

The pooling function is implemented as split x-pooling then y-pooling.

This pooling function is input-destructive. Input data is undefined after calling this function.

Parameters
  • Im_in[inout] pointer to input tensor

  • dim_im_in[in] input tensor dimention

  • ch_im_in[in] number of input tensor channels

  • dim_kernel[in] filter kernel size

  • padding[in] padding sizes

  • stride[in] convolution stride

  • dim_im_out[in] output tensor dimension

  • bufferA[inout] pointer to buffer space for input

  • Im_out[inout] pointer to output tensor