Activation Functions

riscv_nmsis_nn_status riscv_nn_activation_s16(const int16_t *input, int16_t *output, const int32_t size, const int32_t left_shift, const riscv_nn_activation_type type)
void riscv_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, riscv_nn_activation_type type)
void riscv_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, riscv_nn_activation_type type)
void riscv_relu6_s8(int8_t *data, uint16_t size)
void riscv_relu_q15(int16_t *data, uint16_t size)
void riscv_relu_q7(int8_t *data, uint16_t size)
group Acti

Perform activation layers, including ReLU (Rectified Linear Unit), sigmoid and tanh.

Functions

riscv_nmsis_nn_status riscv_nn_activation_s16(const int16_t *input, int16_t *output, const int32_t size, const int32_t left_shift, const riscv_nn_activation_type type)

s16 neural network activation function using direct table look-up

Supported framework: TensorFlow Lite for Microcontrollers. This activation function must be bit precise congruent with the corresponding TFLM tanh and sigmoid activation functions

Parameters
  • input[in] pointer to input data

  • output[out] pointer to output

  • size[in] number of elements

  • left_shift[in] bit-width of the integer part, assumed to be smaller than 3.

  • type[in] type of activation functions

Returns

The function returns RISCV_NMSIS_NN_SUCCESS

void riscv_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, riscv_nn_activation_type type)

neural network activation function using direct table look-up

Q15 neural network activation function using direct table look-up.

Note

Refer header file for details.

void riscv_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, riscv_nn_activation_type type)

Q7 neural network activation function using direct table look-up.

This is the direct table look-up approach.

Assume here the integer part of the fixed-point is <= 3. More than 3 just not making much sense, makes no difference with saturation followed by any of these activation functions.

Parameters
  • data[inout] pointer to input

  • size[in] number of elements

  • int_width[in] bit-width of the integer part, assume to be smaller than 3

  • type[in] type of activation functions

void riscv_relu6_s8(int8_t *data, uint16_t size)

s8 ReLU6 function

Parameters
  • data[inout] pointer to input

  • size[in] number of elements

void riscv_relu_q15(int16_t *data, uint16_t size)

Q15 RELU function.

Parameters
  • data[inout] pointer to input

  • size[in] number of elements

void riscv_relu_q7(int8_t *data, uint16_t size)

Q7 RELU function.

Parameters
  • data[inout] pointer to input

  • size[in] number of elements