NMSIS-NN  Version 1.3.1
NMSIS NN Software Library
Convolution Functions

Collection of convolution, depthwise convolution functions and their variants. More...

Modules

 GetBufferSizeNNConv
 

Functions

riscv_nmsis_nn_status riscv_convolve_1_x_n_s4 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 1xn convolution for s4 weights More...
 
riscv_nmsis_nn_status riscv_convolve_1_x_n_s8 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 1xn convolution More...
 
riscv_nmsis_nn_status riscv_convolve_1x1_HWC_q7_fast_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Fast Q7 version of 1x1 convolution (non-sqaure shape) More...
 
riscv_nmsis_nn_status riscv_convolve_1x1_s4 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 s4 version for 1x1 convolution with support for non-unity stride values More...
 
riscv_nmsis_nn_status riscv_convolve_1x1_s4_fast (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 Fast s4 version for 1x1 convolution (non-square shape) More...
 
riscv_nmsis_nn_status riscv_convolve_1x1_s8 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 s8 version for 1x1 convolution with support for non-unity stride values More...
 
riscv_nmsis_nn_status riscv_convolve_1x1_s8_fast (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 Fast s8 version for 1x1 convolution (non-square shape) More...
 
riscv_nmsis_nn_status riscv_convolve_HWC_q15_basic (const q15_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Basic Q15 convolution function. More...
 
riscv_nmsis_nn_status riscv_convolve_HWC_q15_fast (const q15_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Fast Q15 convolution function. More...
 
riscv_nmsis_nn_status riscv_convolve_HWC_q15_fast_nonsquare (const q15_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Fast Q15 convolution function (non-sqaure shape) More...
 
riscv_nmsis_nn_status riscv_convolve_HWC_q7_basic (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Basic Q7 convolution function. More...
 
riscv_nmsis_nn_status riscv_convolve_HWC_q7_basic_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Basic Q7 convolution function (non-sqaure shape) More...
 
riscv_nmsis_nn_status riscv_convolve_HWC_q7_fast (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Fast Q7 convolution function. More...
 
riscv_nmsis_nn_status riscv_convolve_HWC_q7_fast_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Fast Q7 convolution function (non-sqaure shape) More...
 
riscv_nmsis_nn_status riscv_convolve_HWC_q7_RGB (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Q7 convolution function for RGB image. More...
 
riscv_nmsis_nn_status riscv_convolve_s16 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int16_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const nmsis_nn_bias_data *bias_data, const nmsis_nn_dims *output_dims, int16_t *output_data)
 Basic s16 convolution function. More...
 
riscv_nmsis_nn_status riscv_convolve_s4 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *packed_filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 Basic s4 convolution function. More...
 
riscv_nmsis_nn_status riscv_convolve_s8 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 Basic s8 convolution function. More...
 
riscv_nmsis_nn_status riscv_convolve_wrapper_s16 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int16_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const nmsis_nn_bias_data *bias_data, const nmsis_nn_dims *output_dims, int16_t *output_data)
 s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in nmsis-nn to perform the convolution. More...
 
riscv_nmsis_nn_status riscv_convolve_wrapper_s4 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 s4 convolution layer wrapper function with the main purpose to call the optimal kernel available in nmsis-nn to perform the convolution. More...
 
riscv_nmsis_nn_status riscv_convolve_wrapper_s8 (const nmsis_nn_context *ctx, const nmsis_nn_conv_params *conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in nmsis-nn to perform the convolution. More...
 
riscv_nmsis_nn_status riscv_depthwise_conv_3x3_s8 (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input, const nmsis_nn_dims *filter_dims, const int8_t *kernel, const nmsis_nn_dims *bias_dims, const int32_t *bias, const nmsis_nn_dims *output_dims, int8_t *output)
 Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on the input arguments(documented below). Refer riscv_depthwise_conv_s8() for function argument details. More...
 
riscv_nmsis_nn_status riscv_depthwise_conv_fast_s16 (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int16_t *input, const nmsis_nn_dims *filter_dims, const int8_t *kernel, const nmsis_nn_dims *bias_dims, const int64_t *bias, const nmsis_nn_dims *output_dims, int16_t *output)
 Optimized s16 depthwise convolution function with constraint that in_channel equals out_channel. Refer riscv_depthwise_conv_s16() for function argument details. More...
 
static void __attribute__ ((unused))
 
static void depthwise_conv_s16_generic_s16 (const int16_t *input, const uint16_t input_batches, const uint16_t input_x, const uint16_t input_y, const uint16_t input_ch, const int8_t *kernel, const uint16_t ch_mult, const uint16_t kernel_x, const uint16_t kernel_y, const uint16_t pad_x, const uint16_t pad_y, const uint16_t stride_x, const uint16_t stride_y, const int64_t *bias, int16_t *output, const int32_t *output_shift, const int32_t *output_mult, const uint16_t output_x, const uint16_t output_y, const int32_t output_activation_min, const int32_t output_activation_max, const uint16_t dilation_x, const uint16_t dilation_y)
 
riscv_nmsis_nn_status riscv_depthwise_conv_s16 (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int16_t *input, const nmsis_nn_dims *filter_dims, const int8_t *kernel, const nmsis_nn_dims *bias_dims, const int64_t *bias, const nmsis_nn_dims *output_dims, int16_t *output)
 Basic s16 depthwise convolution function that doesn't have any constraints on the input dimensions. More...
 
static void depthwise_conv_s4_generic (const int8_t *input, const int32_t input_batches, const int32_t input_x, const int32_t input_y, const int32_t input_ch, const int8_t *kernel, const int32_t output_ch, const int32_t ch_mult, const int32_t kernel_x, const int32_t kernel_y, const int32_t pad_x, const int32_t pad_y, const int32_t stride_x, const int32_t stride_y, const int32_t *bias, int8_t *output, const int32_t *output_shift, const int32_t *output_mult, const int32_t output_x, const int32_t output_y, const int32_t output_offset, const int32_t input_offset, const int32_t output_activation_min, const int32_t output_activation_max, const int32_t dilation_x, const int32_t dilation_y)
 
riscv_nmsis_nn_status riscv_depthwise_conv_s4 (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input, const nmsis_nn_dims *filter_dims, const int8_t *kernel, const nmsis_nn_dims *bias_dims, const int32_t *bias, const nmsis_nn_dims *output_dims, int8_t *output)
 Basic s4 depthwise convolution function that doesn't have any constraints on the input dimensions. More...
 
riscv_nmsis_nn_status riscv_depthwise_conv_s4_opt (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input, const nmsis_nn_dims *filter_dims, const int8_t *kernel, const nmsis_nn_dims *bias_dims, const int32_t *bias, const nmsis_nn_dims *output_dims, int8_t *output)
 Optimized s4 depthwise convolution function with constraint that in_channel equals out_channel. Refer riscv_depthwise_conv_s4() for function argument details. More...
 
static void depthwise_conv_s8_mult_4 (const int8_t *input, const int32_t input_x, const int32_t input_y, const int32_t input_ch, const int8_t *kernel, const int32_t output_ch, const int32_t ch_mult, const int32_t kernel_x, const int32_t kernel_y, const int32_t pad_x, const int32_t pad_y, const int32_t stride_x, const int32_t stride_y, const int32_t *bias, int8_t *output, const int32_t *output_shift, const int32_t *output_mult, const int32_t output_x, const int32_t output_y, const int32_t output_offset, const int32_t input_offset, const int32_t output_activation_min, const int32_t output_activation_max)
 
static void depthwise_conv_s8_generic (const int8_t *input, const uint16_t input_batches, const uint16_t input_x, const uint16_t input_y, const uint16_t input_ch, const int8_t *kernel, const uint16_t output_ch, const uint16_t ch_mult, const uint16_t kernel_x, const uint16_t kernel_y, const uint16_t pad_x, const uint16_t pad_y, const uint16_t stride_x, const uint16_t stride_y, const int32_t *bias, int8_t *output, const int32_t *output_shift, const int32_t *output_mult, const uint16_t output_x, const uint16_t output_y, const int32_t output_offset, const int32_t input_offset, const int32_t output_activation_min, const int32_t output_activation_max, const uint16_t dilation_x, const uint16_t dilation_y)
 
riscv_nmsis_nn_status riscv_depthwise_conv_s8 (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input, const nmsis_nn_dims *filter_dims, const int8_t *kernel, const nmsis_nn_dims *bias_dims, const int32_t *bias, const nmsis_nn_dims *output_dims, int8_t *output)
 Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions. More...
 
riscv_nmsis_nn_status riscv_depthwise_conv_s8_opt (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input, const nmsis_nn_dims *filter_dims, const int8_t *kernel, const nmsis_nn_dims *bias_dims, const int32_t *bias, const nmsis_nn_dims *output_dims, int8_t *output)
 Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel. Refer riscv_depthwise_conv_s8() for function argument details. More...
 
riscv_nmsis_nn_status riscv_depthwise_conv_wrapper_s16 (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int16_t *input, const nmsis_nn_dims *filter_dims, const int8_t *filter, const nmsis_nn_dims *bias_dims, const int64_t *bias, const nmsis_nn_dims *output_dims, int16_t *output)
 Wrapper function to pick the right optimized s16 depthwise convolution function. More...
 
riscv_nmsis_nn_status riscv_depthwise_conv_wrapper_s4 (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input, const nmsis_nn_dims *filter_dims, const int8_t *filter, const nmsis_nn_dims *bias_dims, const int32_t *bias, const nmsis_nn_dims *output_dims, int8_t *output)
 Wrapper function to pick the right optimized s4 depthwise convolution function. More...
 
riscv_nmsis_nn_status riscv_depthwise_conv_wrapper_s8 (const nmsis_nn_context *ctx, const nmsis_nn_dw_conv_params *dw_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input, const nmsis_nn_dims *filter_dims, const int8_t *filter, const nmsis_nn_dims *bias_dims, const int32_t *bias, const nmsis_nn_dims *output_dims, int8_t *output)
 Wrapper function to pick the right optimized s8 depthwise convolution function. More...
 
riscv_nmsis_nn_status riscv_depthwise_separable_conv_HWC_q7 (const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB)
 Q7 depthwise separable convolution function. More...
 
riscv_nmsis_nn_status riscv_depthwise_separable_conv_HWC_q7_nonsquare (const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB)
 Q7 depthwise separable convolution function (non-square shape) More...
 
riscv_nmsis_nn_status riscv_transpose_conv_s8 (const nmsis_nn_context *ctx, const nmsis_nn_context *output_ctx, const nmsis_nn_transpose_conv_params *transpose_conv_params, const nmsis_nn_per_channel_quant_params *quant_params, const nmsis_nn_dims *input_dims, const int8_t *input_data, const nmsis_nn_dims *filter_dims, const int8_t *filter_data, const nmsis_nn_dims *bias_dims, const int32_t *bias_data, const nmsis_nn_dims *output_dims, int8_t *output_data)
 Basic s8 transpose convolution function. More...
 

Detailed Description

Collection of convolution, depthwise convolution functions and their variants.

The convolution is implemented in 2 steps: im2col and General Matrix Multiplication(GEMM)

im2col is a process of converting each patch of image data into a column. After im2col, the convolution is computed as matrix-matrix multiplication.

To reduce the memory footprint, the im2col is performed partially. Each iteration, only a few column (i.e., patches) are generated followed by GEMM.

Function Documentation

◆ __attribute__()

static void __attribute__ ( (unused)  )
static

◆ depthwise_conv_s16_generic_s16()

static void depthwise_conv_s16_generic_s16 ( const int16_t *  input,
const uint16_t  input_batches,
const uint16_t  input_x,
const uint16_t  input_y,
const uint16_t  input_ch,
const int8_t *  kernel,
const uint16_t  ch_mult,
const uint16_t  kernel_x,
const uint16_t  kernel_y,
const uint16_t  pad_x,
const uint16_t  pad_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const int64_t *  bias,
int16_t *  output,
const int32_t *  output_shift,
const int32_t *  output_mult,
const uint16_t  output_x,
const uint16_t  output_y,
const int32_t  output_activation_min,
const int32_t  output_activation_max,
const uint16_t  dilation_x,
const uint16_t  dilation_y 
)
static

◆ depthwise_conv_s4_generic()

static void depthwise_conv_s4_generic ( const int8_t *  input,
const int32_t  input_batches,
const int32_t  input_x,
const int32_t  input_y,
const int32_t  input_ch,
const int8_t *  kernel,
const int32_t  output_ch,
const int32_t  ch_mult,
const int32_t  kernel_x,
const int32_t  kernel_y,
const int32_t  pad_x,
const int32_t  pad_y,
const int32_t  stride_x,
const int32_t  stride_y,
const int32_t *  bias,
int8_t *  output,
const int32_t *  output_shift,
const int32_t *  output_mult,
const int32_t  output_x,
const int32_t  output_y,
const int32_t  output_offset,
const int32_t  input_offset,
const int32_t  output_activation_min,
const int32_t  output_activation_max,
const int32_t  dilation_x,
const int32_t  dilation_y 
)
static

◆ depthwise_conv_s8_generic()

static void depthwise_conv_s8_generic ( const int8_t *  input,
const uint16_t  input_batches,
const uint16_t  input_x,
const uint16_t  input_y,
const uint16_t  input_ch,
const int8_t *  kernel,
const uint16_t  output_ch,
const uint16_t  ch_mult,
const uint16_t  kernel_x,
const uint16_t  kernel_y,
const uint16_t  pad_x,
const uint16_t  pad_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const int32_t *  bias,
int8_t *  output,
const int32_t *  output_shift,
const int32_t *  output_mult,
const uint16_t  output_x,
const uint16_t  output_y,
const int32_t  output_offset,
const int32_t  input_offset,
const int32_t  output_activation_min,
const int32_t  output_activation_max,
const uint16_t  dilation_x,
const uint16_t  dilation_y 
)
static

◆ depthwise_conv_s8_mult_4()

static void depthwise_conv_s8_mult_4 ( const int8_t *  input,
const int32_t  input_x,
const int32_t  input_y,
const int32_t  input_ch,
const int8_t *  kernel,
const int32_t  output_ch,
const int32_t  ch_mult,
const int32_t  kernel_x,
const int32_t  kernel_y,
const int32_t  pad_x,
const int32_t  pad_y,
const int32_t  stride_x,
const int32_t  stride_y,
const int32_t *  bias,
int8_t *  output,
const int32_t *  output_shift,
const int32_t *  output_mult,
const int32_t  output_x,
const int32_t  output_y,
const int32_t  output_offset,
const int32_t  input_offset,
const int32_t  output_activation_min,
const int32_t  output_activation_max 
)
static

◆ riscv_convolve_1_x_n_s4()

riscv_nmsis_nn_status riscv_convolve_1_x_n_s4 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

1xn convolution for s4 weights

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_1_x_n_s4_get_buffer_size will return the buffer_size if required The caller is expected to clear the buffer, if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal spatial filter dimension
[in]filter_dataFilter data pointer. Data type: int8 as packed int4
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.
  • Supported framework : TensorFlow Lite Micro
  • The following constrains on the arguments apply
    1. stride.w * input_dims->c is a multiple of 4
    2. Explicit constraints(since it is for 1xN convolution) -## input_dims->h equals 1 -## output_dims->h equals 1 -## filter_dims->h equals 1
      Todo:
      Remove constraint on output_dims->w to make the function generic.

◆ riscv_convolve_1_x_n_s8()

riscv_nmsis_nn_status riscv_convolve_1_x_n_s8 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

1xn convolution

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required The caller is expected to clear the buffer, if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal spatial filter dimension
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.
  • Supported framework : TensorFlow Lite Micro
  • The following constrains on the arguments apply
    1. input_dims->n equals 1
    2. ouput_dims->w is a multiple of 4
    3. Explicit constraints(since it is for 1xN convolution) -## input_dims->h equals 1 -## output_dims->h equals 1 -## filter_dims->h equals 1
      Todo:
      Remove constraint on output_dims->w to make the function generic.

◆ riscv_convolve_1x1_HWC_q7_fast_nonsquare()

riscv_nmsis_nn_status riscv_convolve_1x1_HWC_q7_fast_nonsquare ( const q7_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)

Fast Q7 version of 1x1 convolution (non-sqaure shape)

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding size x
[in]padding_ypadding size y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH or RISCV_NMSIS_NN_SUCCESS based on the outcome of size checking.

This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise separable convolution.

This function is the version with full list of optimization tricks, but with some constraints: ch_im_in is multiple of 4 ch_im_out is multiple of 2

[1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications https://arxiv.org/abs/1704.04861

◆ riscv_convolve_1x1_s4()

riscv_nmsis_nn_status riscv_convolve_1x1_s4 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

s4 version for 1x1 convolution with support for non-unity stride values

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. None is required by this function.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
[in]filter_dataFilter data pointer. Data type: int8 packed with 2x int4
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.
  • Supported framework : TensorFlow Lite Micro
  • The following constrains on the arguments apply
    1. conv_params->padding.w = conv_params->padding.h = 0

◆ riscv_convolve_1x1_s4_fast()

riscv_nmsis_nn_status riscv_convolve_1x1_s4_fast ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Fast s4 version for 1x1 convolution (non-square shape)

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_1x1_s4_fast_get_buffer_size will return the buffer_size if required. The caller is expected to clear the buffer ,if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
[in]filter_dataFilter data pointer. Data type: int8 packed with 2x int4
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.
  • Supported framework : TensorFlow Lite Micro
  • The following constrains on the arguments apply
    1. conv_params->padding.w = conv_params->padding.h = 0
    2. conv_params->stride.w = conv_params->stride.h = 1

◆ riscv_convolve_1x1_s8()

riscv_nmsis_nn_status riscv_convolve_1x1_s8 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

s8 version for 1x1 convolution with support for non-unity stride values

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. None is required by this function.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.
  • Supported framework : TensorFlow Lite Micro
  • The following constrains on the arguments apply
    1. conv_params->padding.w = conv_params->padding.h = 0

◆ riscv_convolve_1x1_s8_fast()

riscv_nmsis_nn_status riscv_convolve_1x1_s8_fast ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Fast s8 version for 1x1 convolution (non-square shape)

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required. The caller is expected to clear the buffer ,if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.
  • Supported framework : TensorFlow Lite Micro
  • The following constrains on the arguments apply
    1. conv_params->padding.w = conv_params->padding.h = 0
    2. conv_params->stride.w = conv_params->stride.h = 1
Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.
  • Supported framework : TensorFlow Lite Micro
  • The following constrains on the arguments apply
    1. input_dims->c is a multiple of 4
    2. conv_params->padding.w = conv_params->padding.h = 0
    3. conv_params->stride.w = conv_params->stride.h = 1

◆ riscv_convolve_HWC_q15_basic()

riscv_nmsis_nn_status riscv_convolve_HWC_q15_basic ( const q15_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q15_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q15_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q15_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)

Basic Q15 convolution function.

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns RISCV_NMSIS_NN_SUCCESS

Buffer size:

bufferA size: ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

This basic version is designed to work for any input tensor and weight dimension.

◆ riscv_convolve_HWC_q15_fast()

riscv_nmsis_nn_status riscv_convolve_HWC_q15_fast ( const q15_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q15_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q15_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q15_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)

Fast Q15 convolution function.

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH or RISCV_NMSIS_NN_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in is multiple of 2

ch_im_out is multiple of 2

dim_im_out is a multiple of 2

◆ riscv_convolve_HWC_q15_fast_nonsquare()

riscv_nmsis_nn_status riscv_convolve_HWC_q15_fast_nonsquare ( const q15_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q15_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q15_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q15_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)

Fast Q15 convolution function (non-sqaure shape)

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding size x
[in]padding_ypadding size y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH or RISCV_NMSIS_NN_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in is multiple of 2

ch_im_out is multiple of 2

◆ riscv_convolve_HWC_q7_basic()

riscv_nmsis_nn_status riscv_convolve_HWC_q7_basic ( const q7_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)

Basic Q7 convolution function.

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns RISCV_NMSIS_NN_SUCCESS

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

This basic version is designed to work for any input tensor and weight dimension.

◆ riscv_convolve_HWC_q7_basic_nonsquare()

riscv_nmsis_nn_status riscv_convolve_HWC_q7_basic_nonsquare ( const q7_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)

Basic Q7 convolution function (non-sqaure shape)

Basic Q7 convolution function (non-square shape)

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding size x
[in]padding_ypadding size y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns RISCV_NMSIS_NN_SUCCESS

◆ riscv_convolve_HWC_q7_fast()

riscv_nmsis_nn_status riscv_convolve_HWC_q7_fast ( const q7_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)

Fast Q7 convolution function.

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH or RISCV_NMSIS_NN_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in is multiple of 4 ( because of the SIMD32 read and swap )

ch_im_out is multiple of 2 ( bacause 2x2 mat_mult kernel )

The im2col converts the Q7 tensor input into Q15 column, which is stored in bufferA. There is reordering happenning during this im2col process with riscv_q7_to_q15_reordered_no_shift. For every four elements, the second and third elements are swapped.

The computation kernel riscv_nn_mat_mult_kernel_q7_q15_reordered does the GEMM computation with the reordered columns.

To speed-up the determination of the padding condition, we split the computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}. This reduces the total number of boundary condition checks and improves the data copying performance.

◆ riscv_convolve_HWC_q7_fast_nonsquare()

riscv_nmsis_nn_status riscv_convolve_HWC_q7_fast_nonsquare ( const q7_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)

Fast Q7 convolution function (non-sqaure shape)

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimention x
[in]dim_im_in_yinput tensor dimention y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding size x
[in]padding_ypadding size y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH or RISCV_NMSIS_NN_SUCCESS based on the outcome of size checking.

This function is the version with full list of optimization tricks, but with some constraints: ch_im_in is multiple of 4 ch_im_out is multiple of 2

◆ riscv_convolve_HWC_q7_RGB()

riscv_nmsis_nn_status riscv_convolve_HWC_q7_RGB ( const q7_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)

Q7 convolution function for RGB image.

Q7 version of convolution for RGB image.

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimention
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH or RISCV_NMSIS_NN_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in equals 3

This kernel is written exclusively for convolution with ch_im_in equals 3. This applies on the first layer of CNNs which has input image with RGB format.

◆ riscv_convolve_s16()

riscv_nmsis_nn_status riscv_convolve_s16 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int16_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const nmsis_nn_bias_data bias_data,
const nmsis_nn_dims output_dims,
int16_t *  output_data 
)

Basic s16 convolution function.

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_s16_get_buffer_size will return the buffer_size if required. The caller is expected to clear the buffer, if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). conv_params->input_offset : Not used conv_params->output_offset : Not used
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int16
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataStruct with optional bias data pointer. Bias data type can be int64 or int32 depending flag in struct.
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int16
Returns
The function returns RISCV_NMSIS_NN_SUCCESS if successful or RISCV_NMSIS_NN_ARG_ERROR if incorrect arguments or RISCV_NMSIS_NN_NO_IMPL_ERROR
  1. Supported framework: TensorFlow Lite micro
  2. Additional memory is required for optimization. Refer to argument 'ctx' for details.

◆ riscv_convolve_s4()

riscv_nmsis_nn_status riscv_convolve_s4 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Basic s4 convolution function.

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_s4_get_buffer_size will return the buffer_size if required. The caller is expected to clear the buffer ,if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions
[in]filter_dataPacked Filter data pointer. Data type: int8 packed with 2x int4
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns RISCV_NMSIS_NN_SUCCESS
  1. Supported framework: TensorFlow Lite micro
  2. Additional memory is required for optimization. Refer to argument 'ctx' for details.

◆ riscv_convolve_s8()

riscv_nmsis_nn_status riscv_convolve_s8 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Basic s8 convolution function.

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_s8_get_buffer_size will return the buffer_size if required. The caller is expected to clear the buffer, if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, HK, WK, CK] where HK, WK and CK are the spatial filter dimensions. CK != C_IN is used for grouped convolution, in which case the required conditions are C_IN = N * CK and C_OUT = N * M for N groups of size M.
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns RISCV_NMSIS_NN_SUCCESS if successful or RISCV_NMSIS_NN_ARG_ERROR if incorrect arguments or RISCV_NMSIS_NN_NO_IMPL_ERROR
  1. Supported framework: TensorFlow Lite micro
  2. Additional memory is required for optimization. Refer to argument 'ctx' for details.

◆ riscv_convolve_wrapper_s16()

riscv_nmsis_nn_status riscv_convolve_wrapper_s16 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int16_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const nmsis_nn_bias_data bias_data,
const nmsis_nn_dims output_dims,
int16_t *  output_data 
)

s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in nmsis-nn to perform the convolution.

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required The caller is expected to clear the buffer, if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). conv_params->input_offset : Not used conv_params->output_offset : Not used
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int16
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataStruct with optional bias data pointer. Bias data type can be int64 or int32 depending flag in struct.
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int16
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.

◆ riscv_convolve_wrapper_s4()

riscv_nmsis_nn_status riscv_convolve_wrapper_s4 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

s4 convolution layer wrapper function with the main purpose to call the optimal kernel available in nmsis-nn to perform the convolution.

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_wrapper_s4_get_buffer_size will return the buffer_size if required. The caller is expected to clear the buffer ,if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions
[in]filter_dataFilter data pointer. Data type: int8 packed with 2x int4
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataBias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.

◆ riscv_convolve_wrapper_s8()

riscv_nmsis_nn_status riscv_convolve_wrapper_s8 ( const nmsis_nn_context ctx,
const nmsis_nn_conv_params conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in nmsis-nn to perform the convolution.

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required. The caller is expected to clear the buffer ,if applicable, for security reasons.
[in]conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of conv_params->input_offset : [-127, 128] Range of conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataBias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.

◆ riscv_depthwise_conv_3x3_s8()

riscv_nmsis_nn_status riscv_depthwise_conv_3x3_s8 ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on the input arguments(documented below). Refer riscv_depthwise_conv_s8() for function argument details.

Returns
The function returns one of the following RISCV_NMSIS_NN_ARG_ERROR - Unsupported dimension of tensors
  • Unsupported pad size along the x axis RISCV_NMSIS_NN_SUCCESS - Successful operation
  • Supported framework : TensorFlow Lite Micro
  • The following constrains on the arguments apply
    1. Number of input channel equals number of output channels
    2. Filter height and width equals 3
    3. Padding along x is either 0 or 1.

◆ riscv_depthwise_conv_fast_s16()

riscv_nmsis_nn_status riscv_depthwise_conv_fast_s16 ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int16_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int64_t *  bias_data,
const nmsis_nn_dims output_dims,
int16_t *  output_data 
)

Optimized s16 depthwise convolution function with constraint that in_channel equals out_channel. Refer riscv_depthwise_conv_s16() for function argument details.

Returns
The function returns one of the following RISCV_NMSIS_NN_ARG_ERROR - ctx-buff == NULL and riscv_depthwise_conv_fast_s16_get_buffer_size() > 0 or input channel != output channel or ch_mult != 1

RISCV_NMSIS_NN_SUCCESS - Successful operation

  • Supported framework: TensorFlow Lite
  • The following constrains on the arguments apply
    1. Number of input channel equals number of output channels or ch_mult equals 1
  • Reccomended when number of channels is 4 or greater.

◆ riscv_depthwise_conv_s16()

riscv_nmsis_nn_status riscv_depthwise_conv_s16 ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int16_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int64_t *  bias_data,
const nmsis_nn_dims output_dims,
int16_t *  output_data 
)

Basic s16 depthwise convolution function that doesn't have any constraints on the input dimensions.

Parameters
[in,out]ctxFunction context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required. exists if additional memory is. The caller is expected to clear the buffer, if applicable, for security reasons.
[in]dw_conv_paramsDepthwise convolution parameters (e.g. strides, dilations, pads,...) conv_params->input_offset : Not used conv_params->output_offset : Not used
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN] Batch argument N is not used.
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [1, H, W, C_OUT]
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataBias data pointer. Data type: int64
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[in,out]output_dataOutput data pointer. Data type: int16
Returns
The function returns RISCV_NMSIS_NN_SUCCESS
  • Supported framework: TensorFlow Lite

◆ riscv_depthwise_conv_s4()

riscv_nmsis_nn_status riscv_depthwise_conv_s4 ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input,
const nmsis_nn_dims filter_dims,
const int8_t *  kernel,
const nmsis_nn_dims bias_dims,
const int32_t *  bias,
const nmsis_nn_dims output_dims,
int8_t *  output 
)

Basic s4 depthwise convolution function that doesn't have any constraints on the input dimensions.

Parameters
[in,out]ctxFunction context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required exists if additional memory is. The caller is expected to clear the buffer ,if applicable, for security reasons.
[in]dw_conv_paramsDepthwise convolution parameters (e.g. strides, dilations, pads,...) dw_conv_params->dilation is not used. Range of dw_conv_params->input_offset : [-127, 128] Range of dw_conv_params->input_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN] Batch argument N is not used.
[in]inputInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [1, H, W, C_OUT]
[in]kernelFilter data pointer. Data type: int8_t packed 4-bit weights, e.g four sequential weights [0x1, 0x2, 0x3, 0x4] packed as [0x21, 0x43].
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]biasBias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[in,out]outputOutput data pointer. Data type: int8
Returns
The function returns RISCV_NMSIS_NN_SUCCESS
  • Supported framework: TensorFlow Lite

◆ riscv_depthwise_conv_s4_opt()

riscv_nmsis_nn_status riscv_depthwise_conv_s4_opt ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Optimized s4 depthwise convolution function with constraint that in_channel equals out_channel. Refer riscv_depthwise_conv_s4() for function argument details.

Returns
The function returns one of the following RISCV_NMSIS_NN_ARG_ERROR - input channel != output channel or ch_mult != 1 RISCV_NMSIS_NN_SUCCESS - Successful operation
  • Supported framework: TensorFlow Lite
  • The following constrains on the arguments apply
    1. Number of input channel equals number of output channels or ch_mult equals 1
  • Reccomended when number of channels is 4 or greater.

◆ riscv_depthwise_conv_s8()

riscv_nmsis_nn_status riscv_depthwise_conv_s8 ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions.

Parameters
[in,out]ctxFunction context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required exists if additional memory is. The caller is expected to clear the buffer, if applicable, for security reasons.
[in]dw_conv_paramsDepthwise convolution parameters (e.g. strides, dilations, pads,...) dw_conv_params->dilation is not used. Range of dw_conv_params->input_offset : [-127, 128] Range of dw_conv_params->input_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN] Batch argument N is not used.
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [1, H, W, C_OUT]
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataBias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[in,out]output_dataOutput data pointer. Data type: int8
Returns
The function returns RISCV_NMSIS_NN_SUCCESS
  • Supported framework: TensorFlow Lite

◆ riscv_depthwise_conv_s8_opt()

riscv_nmsis_nn_status riscv_depthwise_conv_s8_opt ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel. Refer riscv_depthwise_conv_s8() for function argument details.

Returns
The function returns one of the following RISCV_NMSIS_NN_ARG_ERROR - input channel != output channel or ch_mult != 1 RISCV_NMSIS_NN_SUCCESS - Successful operation
  • Supported framework: TensorFlow Lite
  • The following constrains on the arguments apply
    1. Number of input channel equals number of output channels or ch_mult equals 1
  • Reccomended when number of channels is 4 or greater.

◆ riscv_depthwise_conv_wrapper_s16()

riscv_nmsis_nn_status riscv_depthwise_conv_wrapper_s16 ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int16_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int64_t *  bias_data,
const nmsis_nn_dims output_dims,
int16_t *  output_data 
)

Wrapper function to pick the right optimized s16 depthwise convolution function.

Parameters
[in,out]ctxFunction context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if required. The caller is expected to clear the buffer, if applicable, for security reasons.
[in]dw_conv_paramsDepthwise convolution parameters (e.g. strides, dilations, pads,...) dw_conv_params->dilation is not used. Range of dw_conv_params->input_offset : Not used Range of dw_conv_params->output_offset : Not used
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [H, W, C_IN] Batch argument N is not used and assumed to be 1.
[in]input_dataInput (activation) data pointer. Data type: int16
[in]filter_dimsFilter tensor dimensions. Format: [1, H, W, C_OUT]
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataBias data pointer. Data type: int64
[in]output_dimsOutput tensor dimensions. Format: [1, H, W, C_OUT]
[in,out]output_dataOutput data pointer. Data type: int16
Returns
The function returns RISCV_NMSIS_NN_SUCCESS - Successful completion.

◆ riscv_depthwise_conv_wrapper_s4()

riscv_nmsis_nn_status riscv_depthwise_conv_wrapper_s4 ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Wrapper function to pick the right optimized s4 depthwise convolution function.

Parameters
[in,out]ctxFunction context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if required. The caller is expected to clear the buffer ,if applicable, for security reasons.
[in]dw_conv_paramsDepthwise convolution parameters (e.g. strides, dilations, pads,...) dw_conv_params->dilation is not used. Range of dw_conv_params->input_offset : [-127, 128] Range of dw_conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [H, W, C_IN] Batch argument N is not used and assumed to be 1.
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [1, H, W, C_OUT]
[in]filter_dataFilter data pointer. Data type: int8_t packed 4-bit weights, e.g four sequential weights [0x1, 0x2, 0x3, 0x4] packed as [0x21, 0x43].
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataBias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [1, H, W, C_OUT]
[in,out]output_dataOutput data pointer. Data type: int8
Returns
The function returns RISCV_NMSIS_NN_SUCCESS - Successful completion.
  • Supported framework: TensorFlow Lite

◆ riscv_depthwise_conv_wrapper_s8()

riscv_nmsis_nn_status riscv_depthwise_conv_wrapper_s8 ( const nmsis_nn_context ctx,
const nmsis_nn_dw_conv_params dw_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Wrapper function to pick the right optimized s8 depthwise convolution function.

Parameters
[in,out]ctxFunction context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if required. The caller is expected to clear the buffer, if applicable, for security reasons.
[in]dw_conv_paramsDepthwise convolution parameters (e.g. strides, dilations, pads,...) dw_conv_params->dilation is not used. Range of dw_conv_params->input_offset : [-127, 128] Range of dw_conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each output channel
[in]input_dimsInput (activation) tensor dimensions. Format: [H, W, C_IN] Batch argument N is not used and assumed to be 1.
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [1, H, W, C_OUT]
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataBias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [1, H, W, C_OUT]
[in,out]output_dataOutput data pointer. Data type: int8
Returns
The function returns RISCV_NMSIS_NN_SUCCESS - Successful completion.

◆ riscv_depthwise_separable_conv_HWC_q7()

riscv_nmsis_nn_status riscv_depthwise_separable_conv_HWC_q7 ( const q7_t *  Im_in,
const uint16_t  dim_im_in,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel,
const uint16_t  padding,
const uint16_t  stride,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out,
q15_t *  bufferA,
q7_t *  bufferB 
)

Q7 depthwise separable convolution function.

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_ininput tensor dimension
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernelfilter kernel size
[in]paddingpadding sizes
[in]strideconvolution stride
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_outoutput tensor dimension
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH or RISCV_NMSIS_NN_SUCCESS based on the outcome of size checking.

Buffer size:

bufferA size: 2*ch_im_in*dim_kernel*dim_kernel

bufferB size: 0

Input dimension constraints:

ch_im_in equals ch_im_out

Implementation: There are 3 nested loop here: Inner loop: calculate each output value with MAC instruction over an accumulator Mid loop: loop over different output channel Outer loop: loop over different output (x, y)

◆ riscv_depthwise_separable_conv_HWC_q7_nonsquare()

riscv_nmsis_nn_status riscv_depthwise_separable_conv_HWC_q7_nonsquare ( const q7_t *  Im_in,
const uint16_t  dim_im_in_x,
const uint16_t  dim_im_in_y,
const uint16_t  ch_im_in,
const q7_t *  wt,
const uint16_t  ch_im_out,
const uint16_t  dim_kernel_x,
const uint16_t  dim_kernel_y,
const uint16_t  padding_x,
const uint16_t  padding_y,
const uint16_t  stride_x,
const uint16_t  stride_y,
const q7_t *  bias,
const uint16_t  bias_shift,
const uint16_t  out_shift,
q7_t *  Im_out,
const uint16_t  dim_im_out_x,
const uint16_t  dim_im_out_y,
q15_t *  bufferA,
q7_t *  bufferB 
)

Q7 depthwise separable convolution function (non-square shape)

Parameters
[in]Im_inpointer to input tensor
[in]dim_im_in_xinput tensor dimension x
[in]dim_im_in_yinput tensor dimension y
[in]ch_im_innumber of input tensor channels
[in]wtpointer to kernel weights
[in]ch_im_outnumber of filters, i.e., output tensor channels
[in]dim_kernel_xfilter kernel size x
[in]dim_kernel_yfilter kernel size y
[in]padding_xpadding sizes x
[in]padding_ypadding sizes y
[in]stride_xconvolution stride x
[in]stride_yconvolution stride y
[in]biaspointer to bias
[in]bias_shiftamount of left-shift for bias
[in]out_shiftamount of right-shift for output
[in,out]Im_outpointer to output tensor
[in]dim_im_out_xoutput tensor dimension x
[in]dim_im_out_youtput tensor dimension y
[in,out]bufferApointer to buffer space for input
[in,out]bufferBpointer to buffer space for output
Returns
The function returns either RISCV_NMSIS_NN_SIZE_MISMATCH or RISCV_NMSIS_NN_SUCCESS based on the outcome of size checking.

This function is the version with full list of optimization tricks, but with some constraints: ch_im_in is equal to ch_im_out

◆ riscv_transpose_conv_s8()

riscv_nmsis_nn_status riscv_transpose_conv_s8 ( const nmsis_nn_context ctx,
const nmsis_nn_context output_ctx,
const nmsis_nn_transpose_conv_params transpose_conv_params,
const nmsis_nn_per_channel_quant_params quant_params,
const nmsis_nn_dims input_dims,
const int8_t *  input_data,
const nmsis_nn_dims filter_dims,
const int8_t *  filter_data,
const nmsis_nn_dims bias_dims,
const int32_t *  bias_data,
const nmsis_nn_dims output_dims,
int8_t *  output_data 
)

Basic s8 transpose convolution function.

Parameters
[in,out]ctxFunction context that contains the additional buffer if required by the function. riscv_transpose_conv_s8_get_buffer_size will return the buffer_size if required. The caller is expected to clear the buffer, if applicable, for security reasons.
[in,out]output_ctxTemporary scratch buffer. The size required size is: output width * output height * output channel * 4 The caller is expected to clear the buffer, if applicable, for security reasons.
[in]transpose_conv_paramsConvolution parameters (e.g. strides, dilations, pads,...). Range of transpose_conv_params->input_offset : [-127, 128] Range of transpose_conv_params->output_offset : [-128, 127]
[in]quant_paramsPer-channel quantization info. It contains the multiplier and shift values to be applied to each out channel.
[in]input_dimsInput (activation) tensor dimensions. Format: [N, H, W, C_IN]
[in]input_dataInput (activation) data pointer. Data type: int8
[in]filter_dimsFilter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions
[in]filter_dataFilter data pointer. Data type: int8
[in]bias_dimsBias tensor dimensions. Format: [C_OUT]
[in]bias_dataOptional bias data pointer. Data type: int32
[in]output_dimsOutput tensor dimensions. Format: [N, H, W, C_OUT]
[out]output_dataOutput data pointer. Data type: int8
Returns
The function returns either RISCV_NMSIS_NN_ARG_ERROR if argument constraints fail. or, RISCV_NMSIS_NN_SUCCESS on successful completion.
  1. Supported framework: TensorFlow Lite micro
  2. Additional memory is required for optimization. Refer to arguments 'ctx' and 'output_ctx' for details.