NMSIS-DSP  Version 1.3.1
NMSIS DSP Software Library

Calculates the mean of the input vector. Mean is defined as the average of the elements in the vector. The underlying algorithm is used: More...

Functions

RISCV_DSP_ATTRIBUTE void riscv_mean_f16 (const float16_t *pSrc, uint32_t blockSize, float16_t *pResult)
 Mean value of a floating-point vector. More...
 
RISCV_DSP_ATTRIBUTE void riscv_mean_f32 (const float32_t *pSrc, uint32_t blockSize, float32_t *pResult)
 Mean value of a floating-point vector. More...
 
RISCV_DSP_ATTRIBUTE void riscv_mean_f64 (const float64_t *pSrc, uint32_t blockSize, float64_t *pResult)
 Mean value of a floating-point vector. More...
 
RISCV_DSP_ATTRIBUTE void riscv_mean_q15 (const q15_t *pSrc, uint32_t blockSize, q15_t *pResult)
 Mean value of a Q15 vector. More...
 
RISCV_DSP_ATTRIBUTE void riscv_mean_q31 (const q31_t *pSrc, uint32_t blockSize, q31_t *pResult)
 Mean value of a Q31 vector. More...
 
RISCV_DSP_ATTRIBUTE void riscv_mean_q7 (const q7_t *pSrc, uint32_t blockSize, q7_t *pResult)
 Mean value of a Q7 vector. More...
 

Detailed Description

Calculates the mean of the input vector. Mean is defined as the average of the elements in the vector. The underlying algorithm is used:

    Result = (pSrc[0] + pSrc[1] + pSrc[2] + ... + pSrc[blockSize-1]) / blockSize;

There are separate functions for floating-point, Q31, Q15, and Q7 data types.

Function Documentation

◆ riscv_mean_f16()

RISCV_DSP_ATTRIBUTE void riscv_mean_f16 ( const float16_t *  pSrc,
uint32_t  blockSize,
float16_t *  pResult 
)

Mean value of a floating-point vector.

Parameters
[in]pSrcpoints to the input vector.
[in]blockSizenumber of samples in input vector.
[out]pResultmean value returned here.

◆ riscv_mean_f32()

RISCV_DSP_ATTRIBUTE void riscv_mean_f32 ( const float32_t pSrc,
uint32_t  blockSize,
float32_t pResult 
)

Mean value of a floating-point vector.

Parameters
[in]pSrcpoints to the input vector.
[in]blockSizenumber of samples in input vector.
[out]pResultmean value returned here.

◆ riscv_mean_f64()

RISCV_DSP_ATTRIBUTE void riscv_mean_f64 ( const float64_t pSrc,
uint32_t  blockSize,
float64_t pResult 
)

Mean value of a floating-point vector.

Parameters
[in]pSrcpoints to the input vector.
[in]blockSizenumber of samples in input vector.
[out]pResultmean value returned here.

◆ riscv_mean_q15()

RISCV_DSP_ATTRIBUTE void riscv_mean_q15 ( const q15_t pSrc,
uint32_t  blockSize,
q15_t pResult 
)

Mean value of a Q15 vector.

Parameters
[in]pSrcpoints to the input vector
[in]blockSizenumber of samples in input vector
[out]pResultmean value returned here
Scaling and Overflow Behavior
The function is implemented using a 32-bit internal accumulator. The input is represented in 1.15 format and is accumulated in a 32-bit accumulator in 17.15 format. There is no risk of internal overflow with this approach, and the full precision of intermediate result is preserved. Finally, the accumulator is truncated to yield a result of 1.15 format.

◆ riscv_mean_q31()

RISCV_DSP_ATTRIBUTE void riscv_mean_q31 ( const q31_t pSrc,
uint32_t  blockSize,
q31_t pResult 
)

Mean value of a Q31 vector.

Parameters
[in]pSrcpoints to the input vector
[in]blockSizenumber of samples in input vector
[out]pResultmean value returned here
Scaling and Overflow Behavior
The function is implemented using a 64-bit internal accumulator. The input is represented in 1.31 format and is accumulated in a 64-bit accumulator in 33.31 format. There is no risk of internal overflow with this approach, and the full precision of intermediate result is preserved. Finally, the accumulator is truncated to yield a result of 1.31 format.

◆ riscv_mean_q7()

RISCV_DSP_ATTRIBUTE void riscv_mean_q7 ( const q7_t pSrc,
uint32_t  blockSize,
q7_t pResult 
)

Mean value of a Q7 vector.

Parameters
[in]pSrcpoints to the input vector
[in]blockSizenumber of samples in input vector
[out]pResultmean value returned here
Scaling and Overflow Behavior
The function is implemented using a 32-bit internal accumulator. The input is represented in 1.7 format and is accumulated in a 32-bit accumulator in 25.7 format. There is no risk of internal overflow with this approach, and the full precision of intermediate result is preserved. Finally, the accumulator is truncated to yield a result of 1.7 format.