NMSIS-DSP
Version 1.3.1
NMSIS DSP Software Library
|
Implement the naive gaussian Bayes estimator. The training must be done from scikit-learn. More...
Functions | |
RISCV_DSP_ATTRIBUTE uint32_t | riscv_gaussian_naive_bayes_predict_f16 (const riscv_gaussian_naive_bayes_instance_f16 *S, const float16_t *in, float16_t *pOutputProbabilities, float16_t *pBufferB) |
Naive Gaussian Bayesian Estimator. More... | |
RISCV_DSP_ATTRIBUTE uint32_t | riscv_gaussian_naive_bayes_predict_f32 (const riscv_gaussian_naive_bayes_instance_f32 *S, const float32_t *in, float32_t *pOutputProbabilities, float32_t *pBufferB) |
Naive Gaussian Bayesian Estimator. More... | |
Implement the naive gaussian Bayes estimator. The training must be done from scikit-learn.
The parameters can be easily generated from the scikit-learn object. Some examples are given in DSP/Testing/PatternGeneration/Bayes.py
RISCV_DSP_ATTRIBUTE uint32_t riscv_gaussian_naive_bayes_predict_f16 | ( | const riscv_gaussian_naive_bayes_instance_f16 * | S, |
const float16_t * | in, | ||
float16_t * | pOutputProbabilities, | ||
float16_t * | pBufferB | ||
) |
Naive Gaussian Bayesian Estimator.
[in] | *S | points to a naive bayes instance structure |
[in] | *in | points to the elements of the input vector. |
[out] | *pOutputProbabilities | points to a buffer of length numberOfClasses containing estimated probabilities |
[out] | *pBufferB | points to a temporary buffer of length numberOfClasses |
RISCV_DSP_ATTRIBUTE uint32_t riscv_gaussian_naive_bayes_predict_f32 | ( | const riscv_gaussian_naive_bayes_instance_f32 * | S, |
const float32_t * | in, | ||
float32_t * | pOutputProbabilities, | ||
float32_t * | pBufferB | ||
) |
Naive Gaussian Bayesian Estimator.
[in] | *S | points to a naive bayes instance structure |
[in] | *in | points to the elements of the input vector. |
[out] | *pOutputProbabilities | points to a buffer of length numberOfClasses containing estimated probabilities |
[out] | *pBufferB | points to a temporary buffer of length numberOfClasses |