Basic math functions
-
riscv_nmsis_nn_status riscv_elementwise_mul_s16_s8(const int16_t *input_1_vect, const int16_t *input_2_vect, int8_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t block_size, const int32_t batch_size, const int32_t batch_offset)
- group BasicMath
Functions
-
riscv_nmsis_nn_status riscv_elementwise_mul_s16_s8(const int16_t *input_1_vect, const int16_t *input_2_vect, int8_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t block_size, const int32_t batch_size, const int32_t batch_offset)
s16 elementwise multiplication with s8 output
Supported framework: TensorFlow Lite micro
- Parameters
input_1_vect – [in] pointer to input vector 1
input_2_vect – [in] pointer to input vector 2
output – [inout] pointer to output vector
out_offset – [in] output offset
out_mult – [in] output multiplier
out_shift – [in] output shift
block_size – [in] number of samples per batch
batch_size – [in] number of samples per batch
batch_offset – [in] Number of timesteps between consecutive batches in output, see riscv_nn_lstm_step_s8. Note that it is assumed that the input is stored with sequential batches.
- Returns
The function returns RISCV_NMSIS_NN_SUCCESS
-
riscv_nmsis_nn_status riscv_elementwise_mul_s16_s8(const int16_t *input_1_vect, const int16_t *input_2_vect, int8_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t block_size, const int32_t batch_size, const int32_t batch_offset)