NMSIS-DSP  Version 1.3.1
NMSIS DSP Software Library
riscv_svm_example_f32.c
/* ----------------------------------------------------------------------
* Copyright (C) 2019-2020 ARM Limited. All rights reserved.
* Copyright (c) 2019 Nuclei Limited. All rights reserved.
*
* $Date: 09. December 2019
* $Revision: V1.0.0
*
* Project: NMSIS DSP Library
* Title: riscv_svm_example_f32.c
*
* Description: Example code demonstrating how to use SVM functions.
*
* Target Processor: RISC-V Cores
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include <math.h>
#include <stdio.h>
#include "riscv_math.h"
/*
The polynomial SVM instance containing all parameters.
Those parameters can be generated with the python library scikit-learn.
*/
/*
Parameters generated by a training of the SVM classifier
using scikit-learn and some random input data.
*/
#define NB_SUPPORT_VECTORS 11
/*
Dimension of the vector space. A vector is your feature.
It could, for instance, be the pixels of a picture or the FFT of a signal.
*/
#define VECTOR_DIMENSION 2
const float32_t dualCoefficients[NB_SUPPORT_VECTORS]={-0.01628988f, -0.0971605f,
-0.02707579f, 0.0249406f, 0.00223095f, 0.04117345f,
0.0262687f, 0.00800358f, 0.00581823f, 0.02346904f, 0.00862162f}; /* Dual coefficients */
const float32_t supportVectors[NB_SUPPORT_VECTORS*VECTOR_DIMENSION]={ 1.2510991f, 0.47782799f,
-0.32711859f, -1.49880648f, -0.08905047f, 1.31907242f,
1.14059333f, 2.63443767f, -2.62561524f, 1.02120701f,
-1.2361353f, -2.53145187f,
2.28308122f, -1.58185875f, 2.73955981f, 0.35759327f,
0.56662986f, 2.79702016f,
-2.51380816f, 1.29295364f, -0.56658669f, -2.81944734f}; /* Support vectors */
/*
Class A is identified with value 0.
Class B is identified with value 1.
This array is used by the SVM functions to do a conversion and ease the comparison
with the Python code where different values could be used.
*/
const int32_t classes[2]={0,1};
int32_t main(void)
{
/* Enable Vector */
#if (defined(__riscv_vector))
__RV_CSR_SET(CSR_MSTATUS, 0x200);
#endif
/* Array of input data */
float32_t in[VECTOR_DIMENSION];
/* Result of the classifier */
int32_t result;
/*
Initialization of the SVM instance parameters.
Additional parameters (intercept, degree, coef0 and gamma) are also coming from Python.
*/
NB_SUPPORT_VECTORS,
VECTOR_DIMENSION,
-1.661719f, /* Intercept */
dualCoefficients,
supportVectors,
classes,
3, /* degree */
1.100000f, /* Coef0 */
0.500000f /* Gamma */
);
/*
Input data.
It is corresponding to a point inside the first class.
*/
in[0] = 0.4f;
in[1] = 0.1f;
riscv_svm_polynomial_predict_f32(&params, in, &result);
/* Result should be 0 : First class */
printf("Result = %d\n", result);
/*
This input vector is corresponding to a point inside the second class.
*/
in[0] = 3.0f;
in[1] = 0.0f;
riscv_svm_polynomial_predict_f32(&params, in, &result);
/* Result should be 1 : Second class */
printf("Result = %d\n", result);
printf("Passed\n");
return 0;
}
float32_t
float float32_t
32-bit floating-point type definition.
Definition: riscv_math_types.h:257
riscv_svm_polynomial_instance_f32
Instance structure for polynomial SVM prediction function.
Definition: svm_functions.h:95
riscv_svm_polynomial_init_f32
void riscv_svm_polynomial_init_f32(riscv_svm_polynomial_instance_f32 *S, uint32_t nbOfSupportVectors, uint32_t vectorDimension, float32_t intercept, const float32_t *dualCoefficients, const float32_t *supportVectors, const int32_t *classes, int32_t degree, float32_t coef0, float32_t gamma)
SVM polynomial instance init function.
Definition: riscv_svm_polynomial_init_f32.c:70
riscv_svm_polynomial_predict_f32
void riscv_svm_polynomial_predict_f32(const riscv_svm_polynomial_instance_f32 *S, const float32_t *in, int32_t *pResult)
SVM polynomial prediction.
Definition: riscv_svm_polynomial_predict_f32.c:49